Python によるあたらしいデータ分析の教科書

出版社
出版日
ページ数
320
説明

Python を使ったデータ分析の入門書です。

「データ分析とは何ぞや」の說明から入り、データ分析のための数学の基礎、 Python の環境構築方法、データ分析に使える定番ライブラリ等を紹介してくれています。 「データ分析とはどういうものなのか」「データ分析に必要な数学の基礎知識は何なのか」といった基礎の部分から説明してくれているので、「どこから始めたらよいかわからない」という入門者の方が最初に手に取る一冊としてよいのではないかと思います。

目次
Chapter1 データ分析エンジニアの役割 1.1 データ分析の世界 1.2 機械学習の位置づけと流れ 1.3 データ分析に使う主なパッケージ Chapter2 Python と環境 2.1 実行環境構築 2.2 Python の基礎 2.3 Jupyter Notebook Chapter3 数学の基礎 3.1 数式を読むための基礎知識 3.2 線形代数 3.3 基礎解析 3.4 確率と統計 Chapter4 ライブラリによる分析の実践 4.1 NumPy 4.2 pandas 4.3 Matplotlib 4.4 scikit-learn Chapter5 応用:データ収集と加工 5.1 スクレイピング 5.2 自然言語の処理 5.3 画像データの処理
紹介( powered by openBD

データ分析エンジニアに求められる技術の基礎が最短で身に付く

ビッグデータの時代といわれ始めて数年が経過しました。
デバイスの進化により多くの情報がデジタル化され、
それらのデータを活用しようとデータ分析エンジニアに注目が集まっています。

この書籍では、データ分析において、
デファクトスタンダードになりつつあるプログラミング言語Pythonを活用し、
データ分析エンジニアになるための基礎を身に付けることができます。

書籍ではデータ分析エンジニアになるために必須となる技術を身につけていきます。
・データの入手や加工などのハンドリング
・データの可視化
・プログラミング
・基礎的な数学の知識
・機械学習の流れや実行方法
本書で学べること
・Pythonの基本的な文法
・データフォーマットについて
・データの前処理技術
・データの可視化技術
・既存アルゴリズムでの機械学習の実装

対象読者
データ分析エンジニアを目指す方

目次(抜粋)
第1章 データ分析とは
第2章 Pythonと環境
第3章 数学の基礎
第4章 ツールの基礎
第5章 応用:データ収集と加工