現場で使える! NumPy データ処理入門 機械学習・データサイエンスで役立つ高速処理手法

出版社
出版日
ページ数
536
説明

機械学習等の科学技術計算で欠かせないベクトルや行列を扱うための定番の Python ライブラリ「 NumPy 」の入門書です。

目次
第1章 NumPyの基本 第2章 NumPy配列を操作する関数を知る 第3章 NumPyの数学関数を使う 第4章 NumPyで機械学習を実装する
紹介( powered by openBD

機械学習・データサイエンスで役立つ高速処理手法

【本書の概要】
ビッグデータを扱う機械学習の現場では、Pythonの高機能で利用しやすい数学・科学系ライブラリが急速に広まってきています。
本書は、機械学習・データサイエンスの現場でよく利用されているNumPyの基本から始まり、
現場で使える実践的な高速データ処理手法について解説します。
特に、現場でよく扱う配列の処理に力点を置いています。
最終章では機械学習における実践的なデータ処理手法について解説します。

【NumPy(ナンパイ)とは】
NumPyは、機械学習・データサイエンスの現場で扱うことの多い多次元配列(行列やベクトル)を
処理する高水準の数学関数が充実しているライブラリです。
Python単体では遅い処理であっても、C言語なみに高速化できるケースもあり、
機械学習・データサイエンスの分野におけるデータ処理に欠かせないライブラリとなっています。

【対象読者】
機械学習エンジニア、データサイエンティスト

【著者紹介】
吉田拓真(よしだ・たくま)
データサイエンス関連のサービスを提供する株式会社Spot 代表取締役社長。
Webメディア『DeepAge』編集長。

尾原 颯(おはら・そう)
東京大学工学部機械工学科所属。
大学ではハードウェア寄りの勉強が多め。
趣味はアカペラとテニス。基本的に運動が好き。最近、ランニングを始める。